

NONLINEAR EIGENVECTOR CENTRALITY

Francesco Tudisco¹ Desmond J. Higham²¹School of Mathematics, Gran Sasso Science Institute, Italy ²School of Mathematics, University of Edinburgh, UK

Eigenvector centrality:

Eigenvector $u \geq 0$ that quantifies the importance of the nodes in a network

$$M_G u = \lambda u$$

 M_G graph matrix e.g. Adjacency, Random Walk, PageRank

For the adjacency matrix

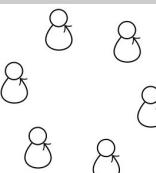
$$u_i \propto \sum_j A_{ij} u_j = (Au)_i$$

Importance of i is **linearly proportional** to the importances of its neighbors

Main drawbacks:

1. Certain **importances are not linear**
2. The solution **may not be unique**

$$Au = u, \forall u$$

So the centrality is **highly ambiguous**

$$A = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & \ddots & & \\ & & & & \ddots & \\ & & & & & 1 \end{bmatrix}$$

$$\mathcal{M}_G(u) = Au^\alpha = u \iff u = 1$$

$$|\partial \mathcal{M}_G(x)|x = \alpha Ax^\alpha$$

For $\alpha \in (0, 1)$ only one nonlinear centrality: the "correct one"General **nonlinear proportionality relations**:

$$u_i \propto \sum_j A_{ij} f(u_j) \quad u_i \propto \sum_{jk} A_{ijk} f(u_j, u_k)$$

Nonlinear eigenvector centrality:

$$\mathcal{M}_G(u) = \lambda u$$

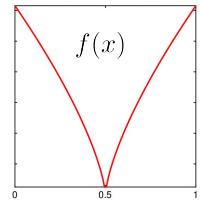
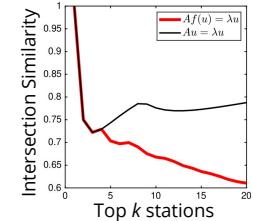
THEOREM

Let $\partial \mathcal{M}_G$ denote the Jacobian of \mathcal{M}_G . If

$$|\partial \mathcal{M}_G(x)|x < \mathcal{M}_G(x) \quad (\text{entrywise})$$

for all $x > 0$, then there exists a unique nonlinear eigenvector centrality $u > 0$, $1^T u = 1$ such that $\mathcal{M}_G(u) = \lambda u$ and we can compute u to an arbitrary precision using a nonlinear Power Method.**Example:** Passengers prefer to use a station over another if it is well connected to important stations but it is surrounded by minor stations

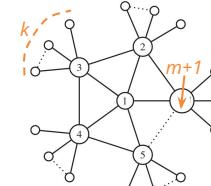
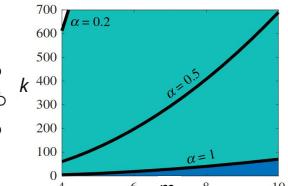
$$u_i \propto \sum_j A_{ij} f(u_j) \quad f(x) = |x - \frac{1}{2}|^\theta$$



Example: Triangle-aware eigenvector centrality

$$u_i \propto \alpha \sum_j A_{ij} u_j + (1 - \alpha) \sum_{jk} A_{ijk} (u_j^p + u_k^p)^{1/p}$$

$$A_{ijk} = 1 \text{ if } ijk \text{ form a triangle}$$

Values of m and k for which $u_1 > u_2$