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* Input
— set of observations (x,y) € RAxR¥

Data—d river] — underlying model M

paradigm

* Goal
infer the map f:x = yin a fast and reliable way
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F(f(x);0) = a(x)
B(f(x)) = b(x)

Nell=laldiile

computing

Field
measurements




To compute f: x = y we need an ansatz function space

Artificial Neural Networks (NNs) are the space of choice
in most applications

Artificial Neural

Network ansatz




Feed-forward

Neural Nets

Parametric family of functions that we can write as

fO; W) =1opoAgo-ooayeAj(x)

where:
W = (Wy, ..., W) are the parameters

 A; : RNi > RNi+1 are simple mappings, for instance
* MatMult 4;(x) = W;x
* Convolution A;(x) = W; * x
* Dot product 4;(x) = Wix (W;x)T

* g; are entrywise nonlinear activation functions



Memory and
computation
footprints

Each time we do inference on x

This requires We need to compute f(x)

* To evaluate £ mappings A; = }.; N;N;11
* To evaluate # activations g; = ),; N;

* To store the weights W; ~ N;; 1 XN; = },; N;N; 44

0(£N?) 0(¢N?)

Operations to make Variables to store




DEIES

AlexNet = 62 million parameters
VGG16 = 135 million parameters
ResNet50 = 23 million parameters
M-BERT = 4 billion parameters
DALL-E = 3.5 billion parameters

Prohibitive for online learning and for
limited-resource devices, e.g.
smartphones, satellites, drones, etc.




Not all weights
are equally
Important




Constrain the parameter space

Most common examples:

e sparsity: nnz(W;) = O(N )
Model * quantization: (W;);; € {—1,0,+1}
compression, » low-rank: rank(W;) = r; < N
aka pruning

before quantization 1000 after quantization
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Lottery ticket

hypothesis

@ 7he lottery ticket hypothesis: finding sparse, trainable
neural networks, J Frankle, M Carbin, ICLR 2019

Dense NNs contain subnetworks that, when trained in

isolation and for the same number of epochs, can match
the accuracy of the original full net.
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Train the full network

| N p 'd Ct | ce Prune the obtained optimal weights

Fix the obtained constraints space and “fine tune”




A network of depth ¢
can be approximated
arbitrarily well by

pruning a network of
depth 2¢

S

@ Proving the lottery
ticket hypothesis, E
Malach et al, ICML20

s this happening by chance?

For any € > 0, and any neural network f (x; W) of depth £
and width N, there exist:

- a larger network g of depth 2¢ and width poly(¢, N, ™ 1),
» and a subnetwork f with only O(#N?) parameters
such that |f — f| < & with probability at least (1 — ¢).

Problem(s): the result is not constructive and no proof
of the existence of winning tickets




How about the
training phase?

This approach
completely ighores
training costs
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Training costs Each iteration requires
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Pruned network

\YEIglielle
training

Constraints space = smooth manifold M




Low—rank matrix manifold

M ={W:rank(W) = r K N}

* W € M can be written as: Memory requirement O (2Nr)

Operation cost O(2NT)
=




Manifold SGD

[ —AVyL(W)

Pre(W — AV L(W))

a

1. Computing fPM(W — /WWL(W)) can be expensive
2. How can we find “the right M” ?




1. Compute PM(W — /WWL(W)) using only the three

DLRT algorithm’s faCt{]’rS U(']S'V” LS.
. . . . « U — U SV, x

key |pgredlents. e VeV =AVyLV;U.S,x)

— efficient « S« S—AVL(S;U,V,x)

— adaptive

2. Adjust the rank of S to match a desired compression rate

# final parameters

~ #initial parameters




Proving the low-rank lottery ticket hypothesis

If the loss is smooth enough and its gradient is

“e-far” from the low-rank manifold, then

W) — [ gy o)
comp low-rank weights ‘f(x’ W(Tl)) — f(x’ W(n))‘ < 0(¢+7)

W™ = ideal full weights
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—e— DLRT 1.4 /l
—— dense reference

Fully-connected [T . =
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LeNet5 on MINIST

method mean test acc. ranks params c.r. params C.r.
LeNetb 98.8% + 0.06  [20,50,500,10] 430500 0% 861000 0%
¥ =0.09 98.2% 4+ 0.26 10, 23, 62, 10] 37445 90.9% £ 0.3 532176 35.5% £ 1.8
¥ =0.11 98.2% +0.44 10, 20, 48, 10| 30278  93.1% +0.45 412898  53.3% + 3.5
¥ =0.13 97.9% 4+ 0.49 9,16, 37,10] 24542  94.3% +£0.17 316997 63.2% + 1.1
Io_: ¥ =0.15 98.1% +0.33 9,16, 28, 10] 20033  95.4% +0.23 251477 71.4% +1.83
A 9=0.2 98.1% + 0.34 8, 8,15, 10] 13091 96.9% £ 0.16 135536 83.4% £+ 1.21
¥9=0.3 97.5% 4 0.48 4,6,8,10] 9398 97.9% +0.08 80792  91.2% £ 0.59
¥=04  96.0% +0.94 2,4,4,10] 7250 98.3% +0.06 47882  94.4% + 0.3
Y =045 94.1% 4 0.49 2,2,3,10] 6647  98.4% +0.07 35654 95.4% +04
(SSL)(ft) 99.18% 110000 74.4% < 0%
(NISP) (ft) 99.0% 100000 76.5% < 0%
(GAL) 98.97% 30000 93.0% < 0%
(LRNN) 98.67% 13,3,9,9] 18075 95.8% < 0%
(SVD prune)  94.0% 2, 5,89, 10] 123646 71.2% < 0%




ImagenetlK — 1million images & 1000 classes

Model test acc. [%] c.r. eval [%] c.r. train [%)]
ResNet-50 —0.56 54.1 14.2
VGG16 —2.19 86 78.4

Test accuracy w.r.t. full-rank baseline for 9 = 0.1



train loss

The bound does

not depend on

the singular
values

train loss




Thank you!



