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Data-driven 
paradigm

• Input
– set of observations 𝑥, 𝑦 ∈ 𝑅!×𝑅"
– underlying model 𝑀

• Goal
infer the map 𝑓: 𝑥 ↦ 𝑦 in a fast and reliable way



Supervised 
classification

f(x)x =

Dog 0.43

Mop 0.56

Pole 0.01

𝑥 =
Dog 0.43

Mop 0.56

Pole 0.01



Prediction & 
recommendation

𝑥 =



Scientific 
computing

,
ℱ 𝑓 𝑥 ; 𝜃 = 𝑎(𝑥)
ℬ 𝑓 𝑥 = 𝑏(𝑥)

Field 
measurements



Artificial Neural 
Network ansatz

To compute 𝑓: 𝑥 ↦ 𝑦 we need an ansatz function space

Artificial Neural Networks (NNs) are the space of choice 
in most applications

𝑥
𝑊! 𝑊" 𝑊#

𝑊$

𝑓(𝑥)



Feed-forward 
Neural Nets

Parametric family of functions that we can write as

𝑓 𝑥;𝑊 = 𝜎ℓ ∘ 𝐴ℓ ∘ ⋯ ∘ 𝜎% ∘ 𝐴% 𝑥

where:

•𝑊 = 𝑊%, … ,𝑊ℓ are the parameters

• 𝐴& ∶ 𝑅'! → 𝑅'!"# are simple mappings, for instance
• MatMult 𝐴& 𝑥 = 𝑊&𝑥
• Convolution 𝐴& 𝑥 = 𝑊& ∗ 𝑥
• Dot product 𝐴& 𝑥 = 𝑊&𝑥 𝑊&𝑥 (

• 𝜎& are entrywise nonlinear activation functions



Memory and 
computation 

footprints

This requires 

• To evaluate ℓ mappings 𝐴& ≈ ∑&𝑁&𝑁&)%
• To evaluate ℓ activations 𝜎& ≈ ∑&𝑁&
• To store the weights 𝑊& ∼ 𝑁&)%×𝑁& ≈ ∑&𝑁&𝑁&)%

𝑂 ℓ𝑁*

Operations to make

𝑂 ℓ𝑁*

Variables to store

Each time we do inference on 𝑥

We need to compute 𝑓(𝑥)

𝑁 !
=
𝑁



Examples
� AlexNet ≈ 62 million parameters
� VGG16 ≈ 135 million parameters
� ResNet50 ≈ 23 million parameters
� M-BERT ≈ 4 billion parameters
� DALL-E ≈ 3.5 billion parameters

� Prohibitive for online learning and for 
limited-resource devices, e.g. 
smartphones, satellites, drones, etc.

!



Not all weights 
are equally 
important



Model 
compression, 
aka pruning

Constrain the parameter space

Most common examples:

• sparsity: 𝑛𝑛𝑧 𝑊& = 𝑂 𝑁
• quantization: 𝑊& &+ ∈ {−1,0, +1}
• low-rank: 𝑟𝑎𝑛𝑘 𝑊& = 𝑟& ≪ 𝑁



Lottery ticket 
hypothesis

📒 The lottery ticket hypothesis: finding sparse, trainable 
neural networks, J Frankle, M Carbin, ICLR 2019

Dense NNs contain subnetworks that, when trained in 
isolation and for the same number of epochs, can match 
the accuracy of the original full net.

Performance of different 
pruning strategies as the 
compression rate increases on 
LeNet5/MNIST
98% → 97%



In practice

Adjust Fix the obtained constraints space and “fine tune”

Prune Prune the obtained optimal weights

Train Train the full network



Is this happening by chance?

For any 𝜀 > 0, and any neural network 𝑓(𝑥;𝑊) of depth ℓ
and width 𝑁, there exist:

� a larger network 𝑔 of depth 2ℓ and width poly(ℓ, 𝑁, 𝜀!"),
� and a subnetwork :𝑓 with only 𝑂(ℓ𝑁#) parameters

such that :𝑓 − 𝑓 ≤ 𝜀 with probability at least (1 − 𝜀).

A network of depth ℓ
can be approximated 
arbitrarily well by 
pruning a network of 
depth 2ℓ

📒 Proving the lottery 
ticket hypothesis, E 
Malach et al, ICML20

Problem(s): the result is not constructive and no proof 
of the existence of winning tickets



How about the 
training phase?

This approach 
completely ignores 

training costs

Evaluate
𝑓(𝑊, 𝑥!)

Evaluate
∇"𝐿 𝑊, 𝑥!
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Training costs Each iteration requires 𝑂(𝟐ℓ𝑁))



Manifold 
training

Constraints space = smooth manifold ℳ

Pruned network

Full training

Pruning step

Proposed 
approach



Low–rank matrix manifold

�ℳ = {𝑊: rank 𝑊 = 𝑟 ≪ 𝑁}

�𝑊 ∈ℳ can be written as:

𝑊
𝑈

𝑉%𝑆

𝑊 𝑈

𝑆 𝑉(

Memory requirement 𝑂(2𝑁𝑟)

Operation cost 𝑂(2𝑁𝑟)



Manifold SGD 𝒫ℳ 𝑊 − 𝜆∇5𝐿 𝑊

−𝜆∇5𝐿 𝑊

𝑊

ℳ

1. Computing 𝒫ℳ 𝑊 − 𝜆∇5𝐿 𝑊 can be expensive

2. How can we find “the right ℳ” ?



DLRT algorithm’s 
key ingredients:
– efficient
– adaptive

1. Compute 𝒫ℳ 𝑊 − 𝜆∇5𝐿 𝑊 using only the three 
factors 𝑈, 𝑆, 𝑉
• 𝑈 ← 𝑈 − 𝜆 ∇6𝐿 𝑈; 𝑆, 𝑉, 𝑥
• 𝑉 ← 𝑉 − 𝜆 ∇7𝐿 𝑉; 𝑈, 𝑆, 𝑥
• 𝑆 ← 𝑆 − 𝜆 ∇8𝐿 𝑆; 𝑈, 𝑉, 𝑥

2. Adjust the rank of 𝑆 to match a desired compression rate

𝜗 =
# _inal parameters
# initial parameters



Proving the low-rank lottery ticket hypothesis

If the loss is smooth enough and its gradient is 
“𝜀-far” from the low-rank manifold, then

𝑓 𝑥; +𝑊 # − 𝑓 𝑥;𝑊(#) ≤ 𝑂(𝜀 + 𝜗)

𝜗 = compression rate

g𝑊(:) = 𝑈(:)𝑆(:)𝑉(:)
comp low-rank weights

𝑊(:) = ideal full weights



Fully-connected 
on MNIST

Rank Evolution



Fully-connected 
on MNIST

Timings & 
Accuracy



LeNet5 on MNIST



Imagenet1K – 1million images & 1000 classes

Test accuracy w.r.t. full-rank baseline for 𝜗 = 0.1



The bound does 
not depend on 

the singular 
values



Thank you!

📒 Low-rank lottery tickets @ NeurIPS 2022


