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1 Introduction

Pairwise node-node interactions are the building block of networks and network mining algorithms. The adjacency
matrix A can be used to represent these interactions. If there are n nodes, A is a n × n matrix with Aij = 1 if
nodes i and j are connected and Aij = 0 otherwise. We assume here undirected edges so that A is symmetric.

In order to motivate our work, we consider here the eigenvector centrality. This is a vector u whose entries quantify
the importance of the nodes in terms of the Perron eigenvector of the adjacency matrix A, precisely

λui =
∑
j:j∼i

uj =

n∑
j=1

Aijuj λ ∈ R, λ > 0, u ∈ Rn, u > 0

This centrality measure is mutually reinforcing, in the sense that the importance of node i is defined in terms of
the importances of its neighbors. The same mutual reinforcement concept is at the core of all centrality measures
based on eigen and singular vectors of graph matrices, as for example HITS and Google’s PageRank algorithms.

Mutually reinforcing algorithms are very useful and widely used. However, the majority of these algorithms
consider only first-order neighborhoods. On the other hand, it is becoming apparent that many important network
features arise from the interaction of larger groups of nodes [1, 4, 6, 7]. In particular, while information on higher-
order interactions among nodes is indirectly used in many network science algorithms by considering traversals
around the network, recent work has shown that there is a benefit in directly taking into account this information
when designing graph algorithms.

In this talk we present a general tensor-based framework for incorporating second-order features (e.g. triangles)
into mutually reinforcing network measures.

2 Nonlinear eigenvector framework

We propose and analyze a new constrained nonlinear eigenvector problem of the form

λu = αMu+ (1− α)Tp(u) λ ∈ R, λ > 0, u ∈ Rn, u > 0 (1)

where α is a coefficient in (0, 1), M is a graph matrix (e.g. adjacency or PageRank matrix) and Tp is the mapping

Tp : Rn → Rn x 7→ Tp(x)i =

n∑
jk=1

Tijk

(
|xj |p + |xk|p

2

)1/p

The coefficients Tijk form a cubic tensor that takes into account second-order graph interactions. For example, Tijk

may be the binary triangle tensor, where Tijk = 1 if ijk form a triangle in the network and Tijk = 0 otherwise.

A vector u solution to (1) models a mutual reinforcement property ui: each node i inherits additional importance
from the nodes in its second-order neighborhood. For example, when T is the triangle tensor, ui is large if i takes
part in triangles that involve important nodes.

The map Tp is defined in terms of a parameter p ∈ R which allows us to tune the way nodes inherit the importances
from their second-order neighbors. For example, if p → 0 we obtain the geometric mean

√
|xjxk| while for

p → ∞ we get max{|xj |, |xk|}. The parameter α, instead, interpolates between traditional edge-based mutual
reinforcement, for α = 1, and a purely second-order model, obtained for α = 0.
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Figure 1: Top: 10 most central nodes in the Karate club network for different second-order eigenvector centrality
models. Bottom: Link-prediction performance ratio between second- and first-order seeded PageRank algorithms.

Different choices of M and T give rise to different mutual reinforcing coefficients. For example, M can be the
PageRank matrix and T the multilinear PageRank tensor [3]. If we define Tijk = 1/(di(di − 1)) if ijk form a
triangle and Tijk = 0 otherwise, we obtain a spectral version of the Watts–Strogatz clustering coefficient [8]. Here
di denotes the degree of node i. Letting ωi =

∑
j:j∼i(dj − 1), the choice Tijk = 1/ωi if ijk form a triangle and

Tijk = 0 yields a mutual reinforcing version of the local closure coefficient [9].

3 Results

Using recent work on nonlinear Perron–Frobenius theory [2], we prove existence of a unique solution to (1), under
mild assumptions on the topology of the graph. Moreover, we show that the solution to (1) can be computed
efficiently using a nonlinear power method. As for the standard power method, the new method is guaranteed
to converge for any positive starting point, the convergence rate is typically linear and the cost of each iteration
is dominated by the cost of applying Tp. Hence the method scales to large and sparse networks that arise in
many applications.

Figure 1 illustrates the computational results that will be presented in the talk. The first row shows the top 10
most central nodes in the Karate club network, obtained using the mutual reinforcing centrality in (1) for different
choices of the tensor T . The second row of the figure compares link-prediction performances on a citation network
between a second-order version of seeded PageRank obtained as a solution to (1) and the standard seeded PageRank
algorithm [5]. The plot shows median and quartiles of the ratio of correctly predicted edges.
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