Francesco Tudisco

Associate Professor (Reader) in Machine Learning

School of Mathematics, The University of Edinburgh
The Maxwell Institute for Mathematical Sciences
School of Mathematics, Gran Sasso Science Institute JCMB, King’s Buildings, Edinburgh EH93FD UK
email: f dot tudisco at ed.ac.uk

ZiF Final Conference

Getting ready for the ZiF final conference in Bielefeld. I will talk about the nodal domains of the $p$-Laplacian operator on discrete graphs.

Precisely, this is the abstract of my talk: The number of nodal domains induced by the eigenfunctions of the Laplacian operator has been completely described both for graphs and for continuous domains. For $p\geq 1$, the $p$-Laplacian is a nonlinear operator which reduces to the standard Laplacian when $p=2$. This nonlinear operator has gained popularity in recent years as, for instance, it can be used to improve data clustering algorithms. We consider a set of variational eigenvalues of the $p$-Laplacian on discrete graphs and analyze the nodal domain structure of the associated eigenfunctions. We show that when $p>1$, the upper bound in the linear nodal domain theorem carries over unchanged to the nonlinear setting, whereas some properties are lost when $p=1$. We also discuss an higher-order Cheeger inequality that can be obtained by exploiting the nodal structure of the $p$-Laplacian.