Francesco Tudisco

Associate Professor (Reader) in Machine Learning

School of Mathematics, The University of Edinburgh
The Maxwell Institute for Mathematical Sciences
School of Mathematics, Gran Sasso Science Institute JCMB, King’s Buildings, Edinburgh EH93FD UK
email: f dot tudisco at ed.ac.uk

Community detection in networks via nonlinear modularity eigenvectors

Francesco Tudisco, Pedro Mercado, Matthias Hein,
SIAM J. Applied Mathematics, 78 : 2393--2419 (2018)

Abstract

Revealing a community structure in a network or dataset is a central problem arising in many scientific areas. The modularity function $Q$ is an established measure quantifying the quality of a community, being identified as a set of nodes having high modularity. In our terminology, a set of nodes with positive modularity is called a module and a set that maximizes $Q$ is thus called leading module. Finding a leading module in a network is an important task, however the dimension of real-world problems makes the maximization of $Q$ unfeasible. This poses the need of approximation techniques which are typically based on a linear relaxation of $Q$, induced by the spectrum of the modularity matrix $M$. In this work we propose a nonlinear relaxation which is instead based on the spectrum of a nonlinear modularity operator $\mathcal M$. We show that extremal eigenvalues of $\mathcal M$ provide an exact relaxation of the modularity measure $Q$, however at the price of being more challenging to be computed than those of $M$. Thus we extend the work made on nonlinear Laplacians, by proposing a computational scheme, named generalized RatioDCA, to address such extremal eigenvalues. We show monotonic ascent and convergence of the method. We finally apply the new method to several synthetic and real-world data sets, showing both effectiveness of the model and performance of the method.


Please cite this work as:

@article{tudisco2018community,
  title={Community detection in networks via nonlinear modularity eigenvectors},
  author={Tudisco, Francesco and Mercado, Pedro and Hein, Matthias},
  journal={SIAM J. Applied Mathematics},
  volume={78},
  pages={2393--2419},
  year={2018}
}

Links: doi arxiv

Keywords: graph modularity nonlinear eigenvalues community detection spectral clustering networks