Processing math: 100%
Francesco Tudisco

Homework

1. Consider the differential equation y(x)=y(x)2, y(0)=1 and let yi=1/(1xi) the exact values, i.e.\ the values of the solution y(x)=1/(1x) on the grid points, i=0,1,2,,k1. Apply k-step explicit and implicit Adams' methods and compare the local error on the next grid point y(xk)yk.

2. Use the identities

(1+x)α=n=0(αn)xn,ln(1x)=n=0xnn

to show that the coefficients

γj=(1)j10(λ+1j)dλ

of the implicit Adams' method satisfy the recursion

0=γm+12γm1+13γm2++1m+1γ0