Francesco Tudisco

New paper out

A note on certain ergodicity coefficients

Abstract: We investigate two ergodicity coefficients $\phi_{|| \cdot ||}$ and $\tau_{n-1}$, originally introduced to bound the subdominant eigenvalues of nonnegative matrices. The former has been generalized to complex matrices in recent years and several properties for such generalized version have been shown so far. We provide a further result concerning the limit of its powers. Then we propose a generalization of the second coefficient $\tau_{n-1}$ and we show that, under mild conditions, it can be used to recast the eigenvector problem $Ax = x$ as a particular $M$-matrix linear system, whose coefficient matrix can be defined in terms of the entries of $A$. ... Read more

New paper out

Adaptive matrix algebras in unconstrained minimization

Abstract: In this paper we study adaptive $L(k)QN$ methods, involving special matrix algebras of low complexity, to solve general (non-structured) unconstrained minimization problems. These methods, which generalize the classical BFGS method, are based on an iterative formula which exploits, at each step, an ad hoc chosen matrix algebra $L(k)$. A global convergence result is obtained under suitable assumptions on $f$. Please cite this work as: @article{cipolla2015adaptive, title={Adaptive matrix algebras in unconstrained minimization}, author={Cipolla, Stefano and Di Fiore, Carmine and Tudisco, Francesco and Zellini, Paolo}, journal={Linear Algebra and its Applications}, volume={471}, pages={544--568}, year={2015}, publisher={Elsevier} }

New paper out

On complex power nonnegative matrices

Abstract: Power nonnegative matrices are defined as complex matrices having at least one nonnegative integer power. We exploit the possibility of deriving a Perron–Frobenius-like theory for these matrices, obtaining three main results and drawing several consequences. We study, in particular, the relationships with the set of matrices having eventually nonnegative powers, the inverse of M-type matrices and the set of matrices whose columns (rows) sum up to one. Please cite this work as: @article{tudisco2015complex, title={On complex power nonnegative matrices}, author={Tudisco, Francesco and Cardinali, Valerio and Di Fiore, Carmine}, journal={Linear Algebra and its Applications}, volume={471}, pages={449--468}, year={2015}, publisher={Elsevier} }

New paper out

An algebraic analysis of the graph modularity

Abstract: One of the most relevant tasks in network analysis is the detection of community structures, or clustering. Most popular techniques for community detection are based on the maximization of a quality function called modularity, which in turn is based upon particular quadratic forms associated to a real symmetric modularity matrix $M$, defined in terms of the adjacency matrix and a rank one null model matrix. That matrix could be posed inside the set of relevant matrices involved in graph theory, alongside adjacency, incidence and Laplacian matrices. ... Read more

New paper out

Optimal Rank Matrix Algebras Preconditioners

Abstract: When a linear system $Ax = y$ is solved by means of iterative methods (mainly CG and GMRES) and the convergence rate is slow, one may consider a preconditioner $P$. The use of such preconditioner changes the spectrum of the matrix defining the system and could result into a great acceleration of the convergence rate. The construction of optimal rank preconditioners is strongly related to the possibility of splitting $A$ as $A = P + R + E$, where $E$ is a small perturbation and $R$ is of low rank. ... Read more

New paper out

A preconditioning approach to the Pagerank computation

Abstract: Some spectral properties of the transition matrix of an oriented graph indicate the preconditioning of Euler-Richardson (ER) iterative scheme as a good way to compute efficiently the vertexrank vector associated with such graph. We choose the preconditioner from an algebra $\mathcal U$ of matrices, thereby obtaining an ER-$\mathcal U$ method, and we observe that ER-$\mathcal U$ can outperform ER in terms of rate of convergence. The proposed preconditioner can be updated at a very low cost whenever the graph changes, as is the case when it represents a generic set of information. ... Read more

New paper out

Contractivity of neural ODEs: an eigenvalue optimization problem

Abstract: We propose a novel methodology to solve a key eigenvalue optimization problem which arises in the contractivity analysis of neural ODEs. When looking at contractivity properties of a one layer weight-tied neural ODE $\dot{u}(t)=σ(Au(t)+b)$ (with $u,b \in {\mathbb R}^n$, $A$ is a given $n \times n$ matrix, $σ: {\mathbb R} \to {\mathbb R}^+$ denotes an activation function and for a vector $z \in {\mathbb R}^n$, $σ(z) \in {\mathbb R}^n$ has to be interpreted entry-wise), we are led to study the logarithmic norm of a set of products of type $D A$, where $D$ is a diagonal matrix such that ${\mathrm{diag}}(D) \in σ'({\mathbb R}^n)$. ... Read more

News highlights

*/}}